Search results
Results From The WOW.Com Content Network
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
In geometry, a polygon with holes is an area-connected planar polygon with one external boundary and one or more interior boundaries (holes). [1] Polygons with holes can be dissected into multiple polygons by adding new edges, so they are not frequently needed.
The surface area of a polyhedron is the sum of areas of its faces, for definitions of polyhedra for which the area of a face is well-defined. The geodesic distance between any two points on the surface of a polyhedron measures the length of the shortest curve that connects the two points, remaining within the surface.
Examples include the oloid, the convex hull of two circles in perpendicular planes, each passing through the other's center, [28] the sphericon, the convex hull of two semicircles in perpendicular planes with a common center, and D-forms, the convex shapes obtained from Alexandrov's uniqueness theorem for a surface formed by gluing together two ...
A tiling that lacks a repeating pattern is called "non-periodic". An aperiodic tiling uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A tessellation of space, also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions.
Möbius geometry is the study of "Euclidean space with a point added at infinity", or a "Minkowski (or pseudo-Euclidean) space with a null cone added at infinity".That is, the setting is a compactification of a familiar space; the geometry is concerned with the implications of preserving angles.