When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polygon with holes - Wikipedia

    en.wikipedia.org/wiki/Polygon_with_holes

    A face with a point hole is considered a monogonal hole, adding one vertex, and one edge, and can attached to a degenerate monogonal hosohedron hole, like a cylinder hole with zero radius. A face with a degenerate digon hole adds 2 vertices and 2 coinciding edges, where the two edges attach to two coplanar faces, as a dihedron hole.

  3. Space-filling polyhedron - Wikipedia

    en.wikipedia.org/wiki/Space-filling_polyhedron

    In geometry, a space-filling polyhedron is a polyhedron that can be used to fill all of three-dimensional space via translations, rotations and/or reflections, where filling means that; taken together, all the instances of the polyhedron constitute a partition of three-space.

  4. Toroidal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Toroidal_polyhedron

    Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.

  5. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    A tiling that lacks a repeating pattern is called "non-periodic". An aperiodic tiling uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A tessellation of space, also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions.

  6. Concentric objects - Wikipedia

    en.wikipedia.org/wiki/Concentric_objects

    The region of the plane between two concentric circles is an annulus, and analogously the region of space between two concentric spheres is a spherical shell. [6] For a given point c in the plane, the set of all circles having c as their center forms a pencil of circles. Each two circles in the pencil are concentric, and have different radii.

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Such a figure is called simplicial if each of its regions is a simplex, i.e. in an n-dimensional space each region has n+1 vertices. The dual of a simplicial polytope is called simple . Similarly, a widely studied class of polytopes (polyhedra) is that of cubical polyhedra, when the basic building block is an n -dimensional cube.

  8. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]

  9. Spherical polyhedron - Wikipedia

    en.wikipedia.org/wiki/Spherical_polyhedron

    In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. A polyhedron whose vertices are equidistant from its center can be conveniently studied by projecting its edges onto the sphere to obtain a corresponding ...