When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  3. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    Affine involutions can be categorized by the dimension of the affine space of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix D (see above), i.e., the dimension of the eigenspace for eigenvalue 1. The affine involutions in 3D are: the identity; the oblique reflection in respect to a plane

  4. Affine group - Wikipedia

    en.wikipedia.org/wiki/Affine_group

    In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real numbers), the affine group consists of those functions from the space to itself such that the image of every line is a line.

  5. Affine space - Wikipedia

    en.wikipedia.org/wiki/Affine_space

    Origins from Alice's and Bob's perspectives. Vector computation from Alice's perspective is in red, whereas that from Bob's is in blue. The following characterization may be easier to understand than the usual formal definition: an affine space is what is left of a vector space after one has forgotten which point is the origin (or, in the words of the French mathematician Marcel Berger, "An ...

  6. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    These are precisely the affine transformations with the property that the image of every line g is a line parallel to g. In projective geometry, a homothetic transformation is a similarity transformation (i.e., fixes a given elliptic involution) that leaves the line at infinity pointwise invariant. [2]

  7. Category:Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Affine_geometry

    Affine geometry is the geometry of affine space of a given dimension n over a field K. The case where K is the real numbers gives an adequate idea of the content. Subcategories

  8. Affine - Wikipedia

    en.wikipedia.org/wiki/Affine

    Affine group, the group of all invertible affine transformations from any affine space over a field K into itself; Affine logic, a substructural logic whose proof theory rejects the structural rule of contraction; Affine representation, a continuous group homomorphism whose values are automorphisms of an affine space

  9. Geometric transformation - Wikipedia

    en.wikipedia.org/wiki/Geometric_transformation

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...