Search results
Results From The WOW.Com Content Network
The mass of an object as measured in its own frame of reference is called its rest mass or invariant mass and is sometimes written . If an object moves with velocity v {\displaystyle \mathbf {v} } in some other reference frame, the quantity m = γ ( v ) m 0 {\displaystyle m=\gamma (\mathbf {v} )m_{0}} is often called the object's "relativistic ...
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
The concept of momentum plays a fundamental role in explaining the behavior of variable-mass objects such as a rocket ejecting fuel or a star accreting gas. In analyzing such an object, one treats the object's mass as a function that varies with time: m(t). The momentum of the object at time t is therefore p(t) = m(t)v(t).
In special relativity, the rule that Wilczek called "Newton's Zeroth Law" breaks down: the mass of a composite object is not merely the sum of the masses of the individual pieces. [84]: 33 Newton's first law, inertial motion, remains true. A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the ...
The term mass in special relativity usually refers to the rest mass of the object, which is the Newtonian mass as measured by an observer moving along with the object. The invariant mass is another name for the rest mass of single particles. The more general invariant mass (calculated with a more complicated formula) loosely corresponds to the ...
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules. For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as
The momentum of the body is 1 kg·m·s −1. The moment of inertia is 1 kg·m 2. The angular momentum is 1 kg·m 2 ·s −1. The kinetic energy is 0.5 joule. The circumference of the orbit is 2 π (~6.283) metres. The period of the motion is 2 π seconds. The frequency is (2 π) −1 hertz.