When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The ideal angle between the axial ligands and the equatorial ligands is 90°; whereas the ideal angle between the two equatorial ligands themselves is 120°. Disphenoidal molecules, like trigonal bipyramidal ones, are subject to Berry pseudorotation in which the axial ligands move to equatorial positions and vice versa. This exchange of ...

  3. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  4. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    However, the bond angle between the two O–H bonds is only 104.5°, rather than the 109.5° of a regular tetrahedron, because the two lone pairs (whose density or probability envelopes lie closer to the oxygen nucleus) exert a greater mutual repulsion than the two bond pairs. [1]: 410–417 [10]

  6. Geometry index - Wikipedia

    en.wikipedia.org/wiki/Geometry_index

    where: β > α are the two greatest valence angles of coordination center; θ = cos −1 (− 1 ⁄ 3) ≈ 109.5° is a tetrahedral angle. Extreme values of τ 4 and τ 4 ′ denote exactly the same geometries, however τ 4 ′ is always less or equal to τ 4 so the deviation from ideal tetrahedral geometry is more visible.

  7. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position. The three atoms bond at 90 ...

  8. Berry mechanism - Wikipedia

    en.wikipedia.org/wiki/Berry_mechanism

    Trigonal bipyramidal molecular shape ax = axial ligands (on unique axis) eq = equatorial ligand (in plane perpendicular to unique axis). The Berry mechanism, or Berry pseudorotation mechanism, is a type of vibration causing molecules of certain geometries to isomerize by exchanging the two axial ligands (see the figure) for two of the equatorial ones.

  9. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Trigonal bipyramid molecules have both with axial and equatorial positions. If there are two types of substituents, the more electronegative substituent will prefer the axial position as there are smaller bond angles between axial and electronegative substituents than between two equatorial substituents. [23]