When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radical axis - Wikipedia

    en.wikipedia.org/wiki/Radical_axis

    The pointset of the radical axis is indeed a line and is perpendicular to the line through the circle centers. (is a normal vector to the radical axis !) Dividing the equation by | |, one gets the Hessian normal form. Inserting the position vectors of the centers yields the distances of the centers to the radical axis:

  3. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle each. Spherical version of Malfatti's problem: [4] The triangle is a spherical one. Essential tools for investigations on circles are the radical axis of two circles and the radical center of three circles.

  4. Homothetic center - Wikipedia

    en.wikipedia.org/wiki/Homothetic_center

    Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.

  5. Power center (geometry) - Wikipedia

    en.wikipedia.org/wiki/Power_center_(geometry)

    The radical axis of a pair of circles is defined as the set of points that have equal power h with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal: h 1 = h 2. Similarly, for every point on the radical axis of circles 2 and 3, the powers must be equal, h 2 = h 3.

  6. Circles of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Circles_of_Apollonius

    All three circles pass through two points, which are known as the isodynamic points and ′ of the triangle. The line connecting these common intersection points is the radical axis for all three circles. The two isodynamic points are inverses of each other relative to the circumcircle of the triangle.

  7. Central line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Central_line_(geometry)

    Let ABC be a plane triangle and let x : y : z be the trilinear coordinates of an arbitrary point in the plane of triangle ABC.. A straight line in the plane of ABC whose equation in trilinear coordinates has the form (,,) + (,,) + (,,) = where the point with trilinear coordinates (,,): (,,): (,,) is a triangle center, is a central line in the plane of ABC relative to ABC.

  8. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    Figure 10: The poles (red points) of the radical axis R in the three given circles (black) lie on the green lines connecting the tangent points. These lines may be constructed from the poles and the radical center (orange). Gergonne found the radical axis R of the unknown solution circles as follows.

  9. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.