When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64 ... Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require ...

  3. 32 (number) - Wikipedia

    en.wikipedia.org/wiki/32_(number)

    Factorization: 2 5: Divisors: 1, 2, 4, 8, 16, 32: ... 32 is the fifth power of two ... The eleventh Mersenne number is the first to have a prime exponent ...

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, = =). This theorem is one of the main reasons why 1 is not considered a prime number : if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 ...

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    2.32.5 Other generalizations ... write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 2, 3, 211, 5, 23, 7 ...

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  7. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of ...

  8. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes. Note that there are rational primes which are not Gaussian primes. A simple example is the rational prime 5, which is factored as 5=(2+i)(2−i) in the table, and therefore not a Gaussian prime.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...