Search results
Results From The WOW.Com Content Network
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [11] It consists of RNA polymerase II, a subset of general transcription factors , and regulatory proteins known as SRB proteins.
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [ 1 ] [ 2 ] It consists of RNA polymerase II , a subset of general transcription factors , and regulatory proteins known as SRB proteins [ clarification needed ] .
In most prokaryotes, a single RNA polymerase species transcribes all types of RNA. RNA polymerase "core" from E. coli consists of five subunits: two alpha (α) subunits of 36 kDa, a beta (β) subunit of 150 kDa, a beta prime subunit (β′) of 155 kDa, and a small omega (ω) subunit. A sigma (σ) factor binds to the core, forming the holoenzyme.
In prokaryotes, activators tend to make contact with the RNA polymerase directly in order to help bind it to the promoter. [2] In eukaryotes, activators mostly interact with other proteins, and these proteins will then be the ones to interact with the RNA polymerase. [2]
Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes (including humans) comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation.
The initiation of the transcription is a multistep sequential process that involves several mechanisms: promoter location, initial reversible binding of RNA polymerase, conformational changes in RNA polymerase, conformational changes in DNA, binding of nucleoside triphosphate (NTP) to the functional RNA polymerase-promoter complex, and ...
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
In eukaryotes, three kinds of RNA—rRNA, tRNA, and mRNA—are produced based on the activity of three distinct RNA polymerases, whereas, in prokaryotes, only one RNA polymerase exists to create all kinds of RNA molecules. [3] RNA polymerase II of eukaryotes transcribes the primary transcript, a transcript destined to be processed into mRNA ...