Search results
Results From The WOW.Com Content Network
This test can be used with a power series = = where the coefficients c n, and the center p are complex numbers and the argument z is a complex variable. The terms of this series would then be given by a n = c n (z − p) n. One then applies the root test to the a n as above.
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
In statistics, the Phillips–Perron test (named after Peter C. B. Phillips and Pierre Perron) is a unit root test. [1] That is, it is used in time series analysis to test the null hypothesis that a time series is integrated of order 1.
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.