Search results
Results From The WOW.Com Content Network
The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = (), = ((+) (+) ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...
where Q = motional energy ("heat") that is transferred reversibly to the system from the surroundings and T = the absolute temperature at which the transfer occurs. In the years to follow, Ludwig Boltzmann translated these 'alterations of arrangement' into a probabilistic view of order and disorder in gas-phase molecular systems.
In 1916, Albert Einstein applied this principle on an atomic level to the case of an atom radiating and absorbing radiation due to transitions between two particular energy levels, [34] giving a deeper insight into the equation of radiative transfer and Kirchhoff's law for this type of radiation.
Though the maximum entropy approach is based directly on informational entropy, it is applicable to physics only when there is a clear physical definition of entropy. There is no clear unique general physical definition of entropy for non-equilibrium systems, which are general physical systems considered during a process rather than ...
() = where u denotes the internal energy per unit mass of the transferred matter, as measured while in the surroundings; and ΔM denotes the amount of transferred mass. The flow of heat is a form of energy transfer. Heat transfer is the natural process of moving energy to or from a system, other than by work or the transfer of matter.
The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which ...
The entropy change of a system excluding its surroundings can be well-defined as a small portion of heat transferred to the system during reversible process divided by the temperature of the system during this heat transfer: = The reversible process is quasistatic (i.e., it occurs without any dissipation, deviating only infinitesimally from the ...
This law of entropy increase quantifies the reduction in the capacity of an isolated compound thermodynamic system to do thermodynamic work on its surroundings, or indicates whether a thermodynamic process may occur. For example, whenever there is a suitable pathway, heat spontaneously flows from a hotter body to a colder one.