When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Microfilament - Wikipedia

    en.wikipedia.org/wiki/Microfilament

    Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi ...

  3. Protein filament - Wikipedia

    en.wikipedia.org/wiki/Protein_filament

    Microfilament Polymerization. Microfilament polymerization is divided into three steps. The nucleation step is the first step, and it is the rate limiting and slowest step of the process. Elongation is the next step in this process, and it is the rapid addition of actin monomers at both the plus and minus end of the microfilament.

  4. Cytoskeleton - Wikipedia

    en.wikipedia.org/wiki/Cytoskeleton

    This is carried out by groups of highly specialized cells working together. A main component in the cytoskeleton that helps show the true function of this muscle contraction is the microfilament. Microfilaments are composed of the most abundant cellular protein known as actin. [10]

  5. Actin - Wikipedia

    en.wikipedia.org/wiki/Actin

    Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils.It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

  6. Cell cortex - Wikipedia

    en.wikipedia.org/wiki/Cell_cortex

    The cortex mainly functions to produce tension under the cell membrane, allowing the cell to change shape. [12] This is primarily accomplished through myosin II motors, which pull on the filaments to generate stress. [12] These changes in tension are required for the cell to change its shape as it undergoes cell migration and cell division. [12]

  7. Pseudopodia - Wikipedia

    en.wikipedia.org/wiki/Pseudopodia

    The functions of pseudopodia include locomotion and ingestion: Pseudopodia are critical in sensing targets which can then be engulfed; the engulfing pseudopodia are called phagocytosis pseudopodia. A common example of this type of amoeboid cell is the macrophage. They are also essential to amoeboid-like locomotion.

  8. Microvillus - Wikipedia

    en.wikipedia.org/wiki/Microvillus

    Myosin 1a functions through a binding site for filamentous actin on one end and a lipid binding domain on the other. The plus ends of the actin filaments are located at the tip of the microvillus and are capped, possibly by capZ proteins, [ 2 ] while the minus ends are anchored in the terminal web composed of a complicated set of proteins ...

  9. Intermediate filament - Wikipedia

    en.wikipedia.org/wiki/Intermediate_filament

    The anti-parallel orientation of tetramers means that, unlike microtubules and microfilaments, which have a plus end and a minus end, IFs lack polarity and cannot serve as basis for cell motility and intracellular transport. Also, unlike actin or tubulin, intermediate filaments do not contain a binding site for a nucleoside triphosphate.