Ad
related to: table of primitive polynomialsixl.com has been visited by 100K+ users in the past month
- Science & Social Studies
Exploration Beyond the Books!
Now Available for K-8.
- English for K-12
Unlock The World Of Words With Fun,
Interactive Practice. Try Us Now!
- Science & Social Studies
Search results
Results From The WOW.Com Content Network
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
The table of primitive polynomials shows how LFSRs can be arranged in Fibonacci or Galois form to give maximal periods. One can obtain any other period by adding to an LFSR that has a longer period some logic that shortens the sequence by skipping some states.
A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...
A monic irreducible polynomial of degree n having coefficients in the finite field GF(q), where q = p t for some prime p and positive integer t, is called a primitive polynomial if all of its roots are primitive elements of GF(q n). [2] [3] In the polynomial representation of the finite field, this implies that x is a primitive element.
In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory) , a minimal polynomial of an extension of finite fields Primitive polynomial (ring theory) , a polynomial with coprime coefficients
A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under
GF(2) (also denoted , Z/2Z or /) is the finite field with two elements. [1] [a]GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.
As before, let be a primitive th root of unity in (), and let () be the minimal polynomial over () of for all . The generator polynomial of the BCH code is defined as the least common multiple g ( x ) = l c m ( m c ( x ) , … , m c + d − 2 ( x ) ) . {\displaystyle g(x)={\rm {lcm}}(m_{c}(x),\ldots ,m_{c+d-2}(x)).}
Ad
related to: table of primitive polynomialsixl.com has been visited by 100K+ users in the past month