Search results
Results From The WOW.Com Content Network
The two-element LC circuit described above is the simplest type of inductor-capacitor network (or LC network). It is also referred to as a second order LC circuit [ 1 ] [ 2 ] to distinguish it from more complicated (higher order) LC networks with more inductors and capacitors.
An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency :
List of free analog and digital electronic circuit simulators, available for Windows, macOS, Linux, and comparing against UC Berkeley SPICE. The following table is split into two groups based on whether it has a graphical visual interface or not.
The Seiler oscillator is an LC electronic oscillator. It was presented in 1941 by E. O. Seiler. [1] The original implementation used a vacuum tube in an Electron-coupled oscillator circuit. Like the Clapp oscillator and the Vackář oscillator it is a variation of the Colpitts oscillator. It uses a voltage divider made of two capacitors, named ...
An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance , inductance and capacitance respectively.
The Victor 3900 is the first electronic calculator to have been built entirely of integrated circuits (ICs). [1] [2] For its era, the 3900 is extremely advanced; it has a 4-inch (100 mm) cathode ray tube screen to produce a 5-line display, has separate memory for storing three intermediate results, supports numerical rounding, and is still "smaller than a typewriter".
Hartley oscillator using a common-drain n-channel JFET instead of a tube.. The Hartley oscillator is distinguished by a tank circuit consisting of two series-connected coils (or, often, a tapped coil) in parallel with a capacitor, with an amplifier between the relatively high impedance across the entire LC tank and the relatively low voltage/high current point between the coils.
Foster's realisation was limited to LC networks and was in one of two forms; either a number of series LC circuits in parallel, or a number of parallel LC circuits in series. Foster's method was to expand () into partial fractions. Cauer showed that Foster's method could be extended to RL and RC networks.