Search results
Results From The WOW.Com Content Network
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
Row-oriented benefits from fast insertion of a new row. Column-oriented benefits from fast insertion of a new column. This dimension is an important reason why row-oriented formats are more commonly used in Online transaction processing (OLTP), as it results in faster transactions in comparison to column-oriented. [2]
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent .
The simplest and probably most widely used method to swap two variables is to use a third temporary variable: define swap (x, y) temp := x x := y y := temp While this is conceptually simple and in many cases the only convenient way to swap two variables, it uses extra memory.
Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations. Usually, multi-word compare-and-swap is implemented in software using normal double-wide compare-and-swap operations. [16] The drawback of this approach is a lack of scalability. Persistent compare-and-swap
Data-driven programming is similar to event-driven programming, in that both are structured as pattern matching and resulting processing, and are usually implemented by a main loop, though they are typically applied to different domains.