Search results
Results From The WOW.Com Content Network
The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a ...
The quantile function, Q, of a probability distribution is the inverse of its cumulative distribution function F. The derivative of the quantile function, namely the quantile density function, is yet another way of prescribing a probability distribution. It is the reciprocal of the pdf composed with the quantile function.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The cumulative distribution function ... The quantile function (or inverse CDF) is written: ... Rectified Gaussian distribution; References
The normal distribution CDF and its inverse are not available in closed form, and computation requires careful use of numerical procedures. However, the functions are widely available in software for statistics and probability modeling, and in spreadsheets. In Microsoft Excel, for example
The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.
The Q-function can be generalized to higher dimensions: [14] = (),where (,) follows the multivariate normal distribution with covariance and the threshold is of the form = for some positive vector > and positive constant >.
The cumulative distribution function of the reciprocal, within the same range, is G ( y ) = b − y − 1 b − a . {\displaystyle G(y)={\frac {b-y^{-1}}{b-a}}.} For example, if X is uniformly distributed on the interval (0,1), then Y = 1 / X has density g ( y ) = y − 2 {\displaystyle g(y)=y^{-2}} and cumulative distribution function G ( y ...