Search results
Results From The WOW.Com Content Network
Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal.
Wavenumber, as used in spectroscopy and most chemistry fields, is defined as the number of wavelengths per unit distance, typically centimeters (cm −1): ~ =, where λ is the wavelength. It is sometimes called the "spectroscopic wavenumber". [1] It equals the spatial frequency.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Wavefunction: ψ, Ψ : To solve from the Schrödinger equation: varies with situation and number of particles
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Wavelength: λ: General definition (allows for FM): = / For non-FM waves this reduces to:
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency.
Wavelength: λ: Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance m −1: L −1: scalar Work: W: Transferred energy joule (J) L 2 M T −2: scalar Young's modulus: E: Ratio of stress to strain pascal (Pa = N/m 2) L −1 M T −2: scalar; assumes ...