Search results
Results From The WOW.Com Content Network
The somatic nervous system (SNS), also known as voluntary nervous system, is a part of the peripheral nervous system (PNS) that links brain and spinal cord to skeletal muscles under conscious control, as well as to sensory receptors in the skin. [1] [2] The other part complementary to the somatic nervous system is the autonomic nervous system ...
In 1898, British scientist John Newport Langley first coined the term "autonomic" in classifying the connections of nerve fibers to peripheral nerve cells. [3] Previous researchers had utilized different terms such as "the sympathetic nerves" [Winslow et al.] to describe the way in which neurons in one part of the body brought about sympathetic reactions in another part of the body, as well as ...
The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. It has two subdivisions, one for the detection of mechanosensory information related to touch, and the other for the nociception detection of pain and temperature. [ 1 ]
The general somatic afferent fibers (GSA or somatic sensory fibers) are afferent fibers that arise from neurons in sensory ganglia and are found in all the spinal nerves, except occasionally the first cervical.
The visceral motor division is known as the autonomic nervous system. [4] In the somatic nervous system, the cranial nerves are part of the PNS with the exceptions of the olfactory nerve and epithelia and the optic nerve (cranial nerve II) along with the retina, which
Visceral efferent neurons innervate smooth muscle, cardiac muscle, and glands, and have the ability to be either excitatory or inhibitory in function. Neuroeffector junctions are known as neuromuscular junctions when the target cell is a muscle fiber. Non-synaptic transmission is characteristic of autonomic neuroeffector junctions.
The autonomic nervous system can work with or without the control of the CNS (that's why it is called 'autonomous'), and also has two subdivisions, called sympathetic and parasympathetic, which are important for transmitting motor orders to the body's basic internal organs, thus controlling functions such as heartbeat, breathing, digestion, and ...
In the abdomen, general visceral afferent fibers usually accompany sympathetic efferent fibers. This means that a signal traveling in an afferent fiber will begin at sensory receptors in the afferent fiber's target organ, travel up to the ganglion where the sympathetic efferent fiber synapses, continue back along a splanchnic nerve from the ganglion into the sympathetic trunk, move into a ...