When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  3. Category:Irrational numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Irrational_numbers

    In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...

  4. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  5. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.

  6. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. [3] In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set.

  7. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the m th root of an integer N as the ratio a ⁄ b of two integers a and b , that share no common prime factor , except in cases in which b = 1.

  8. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    However, the numbers and 2 are incommensurable because their ratio, , is an irrational number. More generally, it is immediate from the definition that if a and b are any two non-zero rational numbers, then a and b are commensurable; it is also immediate that if a is any irrational number and b is any non-zero rational number, then a and b are ...

  9. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    Lambert (1761) gave a flawed proof that π cannot be rational; Legendre (1794) completed the proof [11] and showed that π is not the square root of a rational number. [12] Liouville (1840) showed that neither e nor e 2 can be a root of an integer quadratic equation , and then established the existence of transcendental numbers; Cantor (1873 ...