Search results
Results From The WOW.Com Content Network
Lanthanide ions are used as the active ions in luminescent materials used in optoelectronics applications, most notably the Nd:YAG laser. Erbium-doped fiber amplifiers are significant devices in optical-fiber communication systems. Phosphors with lanthanide dopants are also widely used in cathode-ray tube technology such as television sets. The ...
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
Electron configuration is also a major factor, illustrated by the fact that the rates of water exchange for [Al(H 2 O) 6] 3+ and [Ir(H 2 O) 6] 3+ differ by a factor of 10 9 also. [4] Water exchange usually follows a dissociative substitution pathway, so the rate constants indicate first order reactions.
Lanthanide and actinide aqua ions have higher solvation numbers (often 8 to 9), with the highest known being 11 for Ac 3+. The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are ...
Lanthanide is also mentioned in the Red Book on p. 311, Table IX in the column for "Anions (including anion radicals) or anionic substituent groups" which follows the -ide ending idea. Therefore if you talk about lanthanide there is some ambiguity: is it the negative ion of lanthanum or is it the whole series of lanthanum like elements?
The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), [1] are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals.
Organolanthanide chemistry is the field of chemistry that studies organolanthanides, compounds with a lanthanide-carbon bond. Organolanthanide compounds are different from their organotransition metal analogues in the following ways: They are far more air- and water-sensitive and are often pyrophoric.
Lanthanide chlorides are a group of chemical compounds that can form between a lanthanide element (from lanthanum to lutetium) and chlorine. The lanthanides in these compounds are usually in the +2 and +3 oxidation states , although compounds with lanthanides in lower oxidation states exist.