Search results
Results From The WOW.Com Content Network
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
The theory is an indirect exchange coupling: the hyperfine interaction couples the nuclear spin of one atom to a conduction electron also coupled to the spin of a different nucleus. The assumption of hyperfine interaction turns out to be unnecessary, and can be replaced equally well with the exchange interaction .
Two symbols used for directional couplers. The symbols most often used for directional couplers are shown in figure 1. The symbol may have the coupling factor in dB marked on it. Directional couplers have four ports. Port 1 is the input port where power is applied.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The interaction was first derived by Enrico Fermi in 1930. [7] A classical derivation of this term is contained in "Classical Electrodynamics" by J. D. Jackson. [8] In short, the classical energy may be written in terms of the energy of one magnetic dipole moment in the magnetic field B(r) of another dipole.
The full form of the J-coupling interaction between spins 'I j and I k on the same molecule is: H = 2π I j · J jk · I k. where J jk is the J-coupling tensor, a real 3 × 3 matrix. It depends on molecular orientation, but in an isotropic liquid it reduces to a number, the so-called scalar coupling. In 1D NMR, the scalar coupling leads to ...
In electronics, direct coupling or DC coupling (also called conductive coupling [1] and galvanic coupling) is the transfer of electrical energy by means of physical contact via a conductive medium, in contrast to inductive coupling and capacitive coupling.
Coupling can be deliberate as part of the function of the circuit, or it may be undesirable, for instance due to coupling to stray fields. For example, energy is transferred from a power source to an electrical load by means of conductive coupling , which may be either resistive or direct coupling .