Ads
related to: multiplying numbers with exponents explained for kids
Search results
Results From The WOW.Com Content Network
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
A common technique for multiplication with larger numbers is called long multiplication. This method starts by writing the multiplier above the multiplicand. The calculation begins by multiplying the multiplier only with the rightmost digit of the multiplicand and writing the result below, starting in the rightmost column.
Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]
The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.
So this algorithm computes this number of squares and a lower number of multiplication, which is equal to the number of 1 in the binary representation of n. This logarithmic number of operations is to be compared with the trivial algorithm which requires n − 1 multiplications. This algorithm is not tail-recursive. This implies that it ...
The numbers being multiplied are multiplicands, multipliers, or factors. Multiplication can be expressed as "five times three equals fifteen," "five times three is fifteen," or "fifteen is the product of five and three." Multiplication is represented using the multiplication sign (×), the asterisk (*), parentheses (), or a dot (⋅).