Search results
Results From The WOW.Com Content Network
All nuclear explosions produce fission products, un-fissioned nuclear material, and weapon residues vaporized by the heat of the fireball. These materials are limited to the original mass of the device, but include radioisotopes with long lives. [3] When the nuclear fireball does not reach the ground, this is the only fallout produced.
Thermal radiation—effective ground range GR / km: Fourth degree burns, Conflagration: 0.5 2.0 10 30 Third degree burns: 0.6 2.5 12 38 Second degree burns: 0.8 3.2 15 44 First degree burns: 1.1 4.2 19 53 Effects of instant nuclear radiation—effective slant range 1 SR / km: Lethal 2 total dose (neutrons and gamma rays) 0.8 1.4 2.3 4.7
Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
Nuclear systems powered by 242m Am require less fuel by a factor of 2 to 100 compared to conventional nuclear fuels. Fission-fragment rocket using 242m Am was proposed by George Chapline [ 43 ] at Lawrence Livermore National Laboratory (LLNL) in 1988, who suggested propulsion based on the direct heating of a propellant gas by fission fragments ...
Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]
The single-most important thing to remember if a nuclear bomb is supposed to explode, he says, is to shelter in place. "There were survivors in Hiroshima within 300 meters of the epicenter ...
A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction.The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device.
E1 is produced when gamma radiation from the nuclear detonation ionizes (strips electrons from) atoms in the upper atmosphere. This is known as the Compton effect and the resulting current is called the "Compton current". The electrons travel in a generally downward direction at relativistic speeds (more than