When.com Web Search

  1. Ads

    related to: linear inequality practice problems with answers for chemistry 221 solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Generalizations of the Farkas' lemma are about the solvability theorem for convex inequalities, [4] i.e., infinite system of linear inequalities. Farkas' lemma belongs to a class of statements called "theorems of the alternative": a theorem stating that exactly one of two systems has a solution. [5]

  3. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    A linear programming problem seeks to optimize (find a maximum or minimum value) a function (called the objective function) subject to a number of constraints on the variables which, in general, are linear inequalities. [6] The list of constraints is a system of linear inequalities.

  4. List of unsolved problems in chemistry - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?

  5. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [1] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  7. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    As the equality constraints are all linear, they can be eliminated with linear algebra and integrated into the objective, thus converting an equality-constrained problem into an unconstrained one. In the class of unconstrained (or equality-constrained) problems, the simplest ones are those in which the objective is quadratic .

  8. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  9. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution