When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This relationship is true regardless of the base of the logarithmic or exponential function: If ⁡ is normally distributed, then so is ⁡ for any two positive numbers , . Likewise, if e Y {\displaystyle \ e^{Y}\ } is log-normally distributed, then so is a Y , {\displaystyle \ a^{Y}\ ,} where 0 < a ≠ 1 {\displaystyle 0<a\neq 1} .

  4. Exponential-logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential-logarithmic...

    In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} .

  5. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The log-likelihood is also particularly useful for exponential families of distributions, which include many of the common parametric probability distributions. The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a ...

  7. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution, and X i, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then

  8. Reciprocal distribution - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_distribution

    A positive random variable X is log-uniformly distributed if the logarithm of X is uniform distributed, ⁡ (⁡ (), ⁡ ()). This relationship is true regardless of the base of the logarithmic or exponential function.

  9. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.