Search results
Results From The WOW.Com Content Network
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Runge's phenomenon shows that for high values of n, the interpolation polynomial may oscillate wildly between the data points. This problem is commonly resolved by the use of spline interpolation . Here, the interpolant is not a polynomial but a spline : a chain of several polynomials of a lower degree.
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Trilinear interpolation as two bilinear interpolations followed by a linear interpolation. Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid . It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly ...
Barnes interpolation; Bilinear interpolation; Bicubic interpolation; Bézier surface; Lanczos resampling; Delaunay triangulation; Bitmap resampling is the application of 2D multivariate interpolation in image processing. Three of the methods applied on the same dataset, from 25 values located at the black dots. The colours represent the ...
To find either of the single derivatives, or , using that method, find the slope between the two surrounding points in the appropriate axis. For example, to calculate f x {\displaystyle f_{x}} for one of the points, find f ( x , y ) {\displaystyle f(x,y)} for the points to the left and right of the target point and calculate their slope, and ...
Slerp (spherical linear interpolation) — interpolation between two points on a sphere Generalized quaternion interpolation — generalizes slerp for interpolation between more than two quaternions; Irrational base discrete weighted transform; Nevanlinna–Pick interpolation — interpolation by analytic functions in the unit disc subject to a ...