When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mean of a function - Wikipedia

    en.wikipedia.org/wiki/Mean_of_a_function

    In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().

  3. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    Intuitively, a mean of a function can be thought of as calculating the area under a section of a curve, and then dividing by the length of that section. This can be done crudely by counting squares on graph paper, or more precisely by integration. The integration formula is written as:

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function.

  5. Root mean square - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square

    The RMS is also known as the quadratic mean (denoted ), [2] [3] a special case of the generalized mean. The RMS of a continuous function is denoted and can be defined in terms of an integral of the square of the function. In estimation theory, the root-mean-square deviation of an estimator measures how far the estimator strays from the data.

  6. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    This formula is used in the Spearman–Brown prediction formula of classical test theory. This converges to ρ if n goes to infinity, provided that the average correlation remains constant or converges too. So for the variance of the mean of standardized variables with equal correlations or converging average correlation we have

  7. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a ...

  8. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is equal to f(p). If f : M → N is a function between metric spaces M and N, then it is equivalent that f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).

  9. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In words, this equation says that the residual is orthogonal to the space M of all functions of Y. This orthogonality condition, applied to the indicator functions f ( Y ) = 1 Y ∈ H {\displaystyle f(Y)=1_{Y\in H}} , is used below to extend conditional expectation to the case that X and Y are not necessarily in L 2 {\displaystyle L^{2}} .