Ads
related to: random abstract image generator free unlimited uses and names
Search results
Results From The WOW.Com Content Network
Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.
Ideogram was founded in 2022 by Mohammad Norouzi, William Chan, Chitwan Saharia, and Jonathan Ho to develop a better text-to-image model. [3]It was first released with its 0.1 model on August 22, 2023, [4] after receiving $16.5 million in seed funding, which itself was led by Andreessen Horowitz and Index Ventures.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the desired image depicting a representation of the ...
The software's name is a portmanteau of the names of animated robot Pixar character WALL-E and the Catalan surrealist artist Salvador Dalí. [ 15 ] [ 5 ] In February 2024, OpenAI began adding watermarks to DALL-E generated images, containing metadata in the C2PA (Coalition for Content Provenance and Authenticity) standard promoted by the ...
15-minute random lists of words (house, playing, orphan, encyclopedia....) 15-minute names and faces; 5-minute historic dates (fictional events and historic years) 15-minute abstract images (WMSC, black and white randomly generated spots) / 5-minute random images (IAM, concrete images) Speed cards - Always the last discipline.
The GAN uses a "generator" to create new images and a "discriminator" to decide which created images are considered successful. [32] Unlike previous algorithmic art that followed hand-coded rules, generative adversarial networks could learn a specific aesthetic by analyzing a dataset of example images.
A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.