Ads
related to: exterior angle equation calculator
Search results
Results From The WOW.Com Content Network
The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...
If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side. [1]: pp. 261–264
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34] The sum of the measures of the three exterior angles (one for each vertex) of any triangle is 360 degrees, and indeed, this is true for any convex polygon, no matter ...
Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.
The exterior algebra is the direct sum of the -th exterior powers of , and this makes the exterior algebra a graded algebra. The exterior algebra is universal in the sense that every equation that relates elements of V {\displaystyle V} in the exterior algebra is also valid in every associative algebra that contains V {\displaystyle V} and in ...
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.
If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...