When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    If instead one performed Newton-Raphson iterations beginning with an estimate of 10, it would take two iterations to get to 3.66, matching the hyperbolic estimate. For a more typical case like 75, the hyperbolic estimate of 8.00 is only 7.6% low, and 5 Newton-Raphson iterations starting at 75 would be required to obtain a more accurate result.

  5. Joseph Raphson - Wikipedia

    en.wikipedia.org/wiki/Joseph_Raphson

    It contains a method, now known as the Newton–Raphson method, for approximating the roots of an equation. Isaac Newton had developed a very similar formula in his Method of Fluxions, written in 1671, but this work would not be published until 1736, nearly 50 years after Raphson's Analysis. However, Raphson's version of the method is simpler ...

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it ...

  7. Newton fractal - Wikipedia

    en.wikipedia.org/wiki/Newton_fractal

    The Newton fractal is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial p(z) ∈ [z] or transcendental function. It is the Julia set of the meromorphic function z ↦ z − ⁠ p ( z ) / p′ ( z ) ⁠ which is given by Newton's method.

  8. Power-flow study - Wikipedia

    en.wikipedia.org/wiki/Power-flow_study

    Fast-decoupled-load-flow method is a variation on Newton–Raphson that exploits the approximate decoupling of active and reactive flows in well-behaved power networks, and additionally fixes the value of the Jacobian during the iteration in order to avoid costly matrix decompositions. Also referred to as "fixed-slope, decoupled NR".

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    This is where one employs the Newton–Raphson method as such. Compute the quotient by multiplying the dividend by the reciprocal of the divisor: Q = N X S {\displaystyle Q=NX_{S}} . In order to apply Newton's method to find the reciprocal of D {\displaystyle D} , it is necessary to find a function f ( X ) {\displaystyle f(X)} that has a zero ...