Ads
related to: calculating radius and diameter worksheet free answer sheet
Search results
Results From The WOW.Com Content Network
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
To calculate a circle's perimeter, knowledge of its radius or diameter and the number π suffices. The problem is that π is not rational (it cannot be expressed as the quotient of two integers ), nor is it algebraic (it is not a root of a polynomial equation with rational coefficients).
Pi is defined as the ratio of a circle's circumference to its diameter: [4] =. Or, equivalently, as the ratio of the circumference to twice the radius . The above formula can be rearranged to solve for the circumference: C = π ⋅ d = 2 π ⋅ r . {\displaystyle {C}=\pi \cdot {d}=2\pi \cdot {r}.\!}
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
The radius of the incircle is related to the area of the triangle. [18] The ratio of the area of the incircle to the area of the triangle is less than or equal to π / 3 3 {\displaystyle \pi {\big /}3{\sqrt {3}}} , with equality holding only for equilateral triangles .
A chance to do something different. For decades, North Carolina football has been defined by a cliche; an old quote that might be more urban legend than reality.