When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  4. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...

  6. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    A Euclidean isometry can be direct or indirect, depending on whether it preserves the handedness of figures. The direct Euclidean isometries form a subgroup, the special Euclidean group, often denoted SE(n) and E + (n), whose elements are called rigid motions or Euclidean motions. They comprise arbitrary combinations of translations and ...

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Any two-dimensional direct motion is either a translation or a rotation; see Euclidean plane isometry for details. Euler rotations of the Earth. Intrinsic (green), precession (blue) and nutation (red) Rotations in three-dimensional space differ from those in two dimensions in a number of

  8. 8 Exercises to Get You Moving in the 3 Planes of Motion - AOL

    www.aol.com/news/8-exercises-moving-3-planes...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    A point in three-dimensional Euclidean space can be located by three coordinates. Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer ...