When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The half-angle formula for sine can be obtained by replacing with / and taking the square-root of both sides: ⁡ (/) = (⁡) /. Note that this figure also illustrates, in the vertical line segment E B ¯ {\displaystyle {\overline {EB}}} , that sin ⁡ 2 θ = 2 sin ⁡ θ cos ⁡ θ {\displaystyle \sin 2\theta =2\sin \theta \cos \theta } .

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The unit circle centered at the origin in the Euclidean plane is defined by the equation: [2] x 2 + y 2 = 1. {\displaystyle x^{2}+y^{2}=1.} Given an angle θ , there is a unique point P on the unit circle at an anticlockwise angle of θ from the x -axis, and the x - and y -coordinates of P are: [ 3 ]

  4. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  5. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    Animation demonstrating how the sine function (in red) is graphed from the y-coordinate (red dot) of a point on the unit circle (in green), at an angle of θ. The cosine (in blue) is the x-coordinate. Using the unit circle definition has the advantage of drawing a graph of sine and cosine functions.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = ⁡ = ⁡ The area of triangle OAD is AB/2, or sin(θ)/2.

  7. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    To extend the sine and cosine functions to functions whose domain is the whole real line, geometrical definitions using the standard unit circle (i.e., a circle with radius 1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    This formula can be interpreted as saying that the function e iφ is a unit complex number, i.e., it traces out the unit circle in the complex plane as φ ranges through the real numbers. Here φ is the angle that a line connecting the origin with a point on the unit circle makes with the positive real axis, measured counterclockwise and in ...

  9. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37] In this setting, the terminal side of an angle A placed in standard position will intersect the unit circle in a point (x,y), where x = cos ⁡ A {\displaystyle x=\cos A} and y = sin ⁡ A {\displaystyle ...