Search results
Results From The WOW.Com Content Network
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
In particular, for any fixed value of R the volume tends to a limiting value of 0 as n goes to infinity. Which value of n maximizes V n (R) depends upon the value of R; for example, the volume V n (1) is increasing for 0 ≤ n ≤ 5, achieves its maximum when n = 5, and is decreasing for n ≥ 5. [2]
In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space , it is the set of points equidistant from a fixed central point.
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest packing uses approximately 74% of the volume.
The volume of the unit ball in Euclidean -space, and the surface area of the unit sphere, appear in many important formulas of analysis. The volume of the unit n {\displaystyle n} -ball, which we denote V n , {\displaystyle V_{n},} can be expressed by making use of the gamma function .
hypersphere volume and surface area graphs: Image title: Graphs of volumes and surface areas of n-spheres of radius 1 by CMG Lee. The apparent intersection is an artifact of the differing scales. In the SVG file, hover over a point to see its decimal value. Width: 100%: Height: 100%
The volume of phase space , occupied by a system of degrees of freedom is the product of the configuration volume and the momentum space volume. Since the energy is a quadratic form of the momenta for a non-relativistic system, the radius of momentum space will be so that the volume of a hypersphere will vary as giving a phase volume of