Search results
Results From The WOW.Com Content Network
In computing, a segmentation fault (often shortened to segfault) or access violation is a fault, or failure condition, raised by hardware with memory protection, notifying an operating system (OS) the software has attempted to access a restricted area of memory (a memory access violation).
A guard page typically halts the program, preventing memory corruption, but functions with large stack frames may bypass the page, and kernel code may not have the benefit of guard pages. Heap exhaustion – the program tries to allocate more memory than the amount available. In some languages, this condition must be checked for manually after ...
Memory corruption occurs in a computer program when the contents of a memory location are modified due to programmatic behavior that exceeds the intention of the original programmer or program/language constructs; this is termed as violation of memory safety. The most likely causes of memory corruption are programming errors (software bugs ...
In some programming language environments (at least one proprietary Lisp implementation, for example), [citation needed] the value used as the null pointer (called nil in Lisp) may actually be a pointer to a block of internal data useful to the implementation (but not explicitly reachable from user programs), thus allowing the same register to be used as a useful constant and a quick way of ...
Memory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it.
Access to shared data is serialized using mechanisms that ensure only one thread reads or writes to the shared data at any time. Incorporation of mutual exclusion needs to be well thought out, since improper usage can lead to side-effects like deadlocks , livelocks , and resource starvation .
The load and store were executed out of program order, but there was a memory dependence between them that was violated. Similarly, assume that register $26 is ready. The sw $26, 0($30) instruction on line 4 is also ready to execute, and it may execute before the preceding lw $08, 0($31) on line 3.
The Java memory model describes how threads in the Java programming language interact through memory. Together with the description of single-threaded execution of code, the memory model provides the semantics of the Java programming language.