When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  5. Oliver Heaviside - Wikipedia

    en.wikipedia.org/wiki/Oliver_Heaviside

    Oliver Heaviside (/ ˈ h ɛ v i s aɪ d / HEH-vee-syde; 18 May 1850 – 3 February 1925) was an English mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today.

  6. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

  7. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.

  8. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The step potential is simply the product of V 0, the height of the barrier, and the Heaviside step function: = {, <, The barrier is positioned at x = 0, though any position x 0 may be chosen without changing the results, simply by shifting position of the step by −x 0.

  9. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Then, the Heaviside step function Θ(x − x 0) is a Green's function of L at x 0. Let n = 2 and let the subset be the quarter-plane {(x, y) : x, y ≥ 0} and L be the Laplacian. Also, assume a Dirichlet boundary condition is imposed at x = 0 and a Neumann boundary condition is imposed at y = 0.