When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  4. Purity (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Purity_(quantum_mechanics)

    A graphical intuition of purity may be gained by looking at the relation between the density matrix and the Bloch sphere, = (+), where is the vector representing the quantum state (on or inside the sphere), and = (,,) is the vector of the Pauli matrices. Since Pauli matrices are traceless, it still holds that tr(ρ) = 1.

  5. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.

  6. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ⁠ ħ / 2 ⁠. For example, the spin projection operator S z affects a measurement of the spin in the z direction.

  7. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...

  8. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    Multi-qubit Pauli matrices can be written as products of single-qubit Paulis on disjoint qubits. Alternatively, when it is clear from context, the tensor product symbol can be omitted, i.e. unsubscripted Pauli matrices written consecutively represents tensor product rather than matrix product. For example:

  9. Helicity basis - Wikipedia

    en.wikipedia.org/wiki/Helicity_basis

    The two-component helicity eigenstates satisfy ^ (^) = (^) where are the Pauli matrices, ^ is the direction of the fermion momentum, = depending on whether spin is pointing in the same direction as ^ or opposite.

  1. Related searches what is a pauli matrix test is done for the following conditions of total

    pauli matrix equationpauli matrix symbol
    pauli matrix meaningpauli matrix quantum mechanics
    pauli matrices wikipediapauli spin matrix