Search results
Results From The WOW.Com Content Network
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection , used for marine navigation with constant compass bearing .
where is the inverse Gudermannian function, the integral of the secant function. There are a number of reasons why this particular antiderivative is worthy of special attention: The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Improper integral; Indicator function; Integral of secant cubed; Integral of the secant function; Integral operator; Integral test for convergence; Integration by parts; Integration by parts operator; Integration by reduction formulae; Integration by substitution; Integration using Euler's formula; Integration using parametric derivatives; Itô ...
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function is any trigonometric function, and is its derivative, = + In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = , sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: = +, = +, = +.
In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic ...