When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_approximation

    Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...

  3. Heston model - Wikipedia

    en.wikipedia.org/wiki/Heston_model

    In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. [1] It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.

  4. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...

  5. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  7. Gillespie algorithm - Wikipedia

    en.wikipedia.org/wiki/Gillespie_algorithm

    The process that led to the algorithm recognizes several important steps. In 1931, Andrei Kolmogorov introduced the differential equations corresponding to the time-evolution of stochastic processes that proceed by jumps, today known as Kolmogorov equations (Markov jump process) (a simplified version is known as master equation in the natural sciences).

  8. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. [60] For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term stochastischer Prozeß was used in German by Aleksandr Khinchin, [63] [64] though the German term had been used earlier, for example, by Andrei Kolmogorov ...

  9. Stochastic computing - Wikipedia

    en.wikipedia.org/wiki/Stochastic_computing

    Stochastic computing is a collection of techniques that represent continuous values by streams of random bits. Complex computations can then be computed by simple bit-wise operations on the streams. Complex computations can then be computed by simple bit-wise operations on the streams.

  1. Related searches setting stochastic yang akurat buat uang di laptop keyboard pada

    setting stochastic yang akurat buat uang di laptop keyboard pada saat