When.com Web Search

  1. Ad

    related to: calculating flow rate for iv fluids worksheet 1 printable
    • Turbine Flow Meters

      Clean Process Fluid Measurement

      For Reliable Industrial Performance

    • Oil Flow Meter

      Immediate Flow Meter Proposal

      For Clean Process Fluid Application

Search results

  1. Results From The WOW.Com Content Network
  2. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per ...

  3. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure ...

  4. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The Hagen–Poiseuille equation is useful in determining the vascular resistance and hence flow rate of intravenous (IV) fluids that may be achieved using various sizes of peripheral and central cannulas. The equation states that flow rate is proportional to the radius to the fourth power, meaning that a small increase in the internal diameter ...

  5. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a

  6. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  7. Inertance - Wikipedia

    en.wikipedia.org/wiki/Inertance

    In fluid mechanics, inertance is a measure of the pressure difference in a fluid required to cause a unit change in the rate of change of volumetric flow-rate with time. The base SI units of inertance are kg m −4 or Pa s 2 m −3 and the usual symbol is I. The inertance of a tube is given by: = where

  8. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  9. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    At cross section 1, the mean flow velocity is equal to v 1, the pressure is p 1 and the cross-sectional area is A 1. The corresponding flow quantities at cross section 2 – well behind the expansion (and regions of separated flow) – are v 2, p 2 and A 2, respectively. At the expansion, the flow separates and there are turbulent recirculating ...