Search results
Results From The WOW.Com Content Network
A Banach space is super-reflexive if all Banach spaces finitely representable in are reflexive, or, in other words, if no non-reflexive space is finitely representable in . The notion of ultraproduct of a family of Banach spaces [ 14 ] allows for a concise definition: the Banach space X {\displaystyle X} is super-reflexive when its ultrapowers ...
In mathematics, more specifically in functional analysis, a Banach space (/ ˈ b ɑː. n ʌ x /, Polish pronunciation:) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is ...
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.. The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939).
The topological dual of -Banach space deduced from by any restriction scalar will be denoted ′. (It is of interest only if is a complex space because if is a -space then ′ = ′. James compactness criterion — Let X {\displaystyle X} be a Banach space and A {\displaystyle A} a weakly closed nonempty subset of X . {\displaystyle X.}
A Banach space is reflexive if and only if its closed unit ball is (, ′)-compact; this is known as James' theorem. [3] If is a reflexive Banach space, then every bounded sequence in has a weakly convergent subsequence.
As a space is super-reflexive if and only if its dual is super-reflexive, it follows that the class of Banach spaces that admit an equivalent uniformly convex norm coincides with the class of spaces that admit an equivalent uniformly smooth norm.