Search results
Results From The WOW.Com Content Network
Video random-access memory (VRAM) is dedicated computer memory used to store the pixels and other graphics data as a framebuffer to be rendered on a computer monitor. [1] It often uses a different technology than other computer memory, in order to be read quickly for display on a screen.
Dual-ported video RAM (VRAM) is a dual-ported RAM variant of dynamic RAM (DRAM), which was once commonly used to store the Framebuffer in Graphics card, . Dual-ported RAM allows the CPU to read and write data to memory as if it were a conventional DRAM chip, while adding a second port that reads out data.
The SK Hynix chips were expected to have a transfer rate of 14–16 Gbit/s. [4] The first graphics cards to use SK Hynix's GDDR6 RAM were expected to use 12 GB of RAM with a 384-bit memory bus, yielding a bandwidth of 768 GB/s. [3] SK Hynix began mass production in February 2018, with 8 Gbit chips and a data rate of 14 Gbit/s per pin. [14]
The later revision of the DGX-1 offered support for first generation Volta cards via the SXM-2 socket. Nvidia offered upgrade kits that allowed users with a Pascal-based DGX-1 to upgrade to a Volta-based DGX-1. [7] [8] The Pascal-based DGX-1 has two variants, one with a 16 core Intel Xeon E5-2698 V3, and one
The processor includes an up to 400 MHz 256-bit core, supporting up to 10.6 GB/s memory bandwidth with DDR2-667 system RAM, up to 224 MB max. video memory through DVMT scheme, 1.6 GPixels/s and 1.6 GTexels/s fill rate, a max. resolution of 2048x1536 for both analog and digital displays, 2 SDVO ports for flat-panels and/or TV-Out via ADD2 cards ...
Graphics DDR SDRAM (GDDR SDRAM) is a type of synchronous dynamic random-access memory (SDRAM) specifically designed for applications requiring high bandwidth, [1] e.g. graphics processing units (GPUs).
Intel Xe expands upon the microarchitectural overhaul introduced in Gen 11 with a full refactor of the instruction set architecture. [19] [4] While Xe is a family of architectures, each variant has significant differences from each other as these are made with their targets in mind.
Hynix Semiconductor introduced the industry's first 60 nm class "1 Gb" (1024 3 bit) GDDR5 memory in 2007. [3] It supported a bandwidth of 20 GB/s on a 32-bit bus, which enables memory configurations of 1 GB at 160 GB/s with only 8 circuits on a 256-bit bus. The following year, in 2008, Hynix bested this technology with its 50 nm class "1 Gb ...