Ad
related to: multivariate analysis
Search results
Results From The WOW.Com Content Network
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to ...
In statistics, multivariate analysis of variance (MANOVA) is a procedure for comparing multivariate sample means. As a multivariate procedure, it is used when there are two or more dependent variables , [ 1 ] and is often followed by significance tests involving individual dependent variables separately.
Multivariate analysis of covariance (MANCOVA) is an extension of analysis of covariance methods to cover cases where there is more than one dependent variable and where the control of concomitant continuous independent variables – covariates – is required.
The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]
Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups. It is a multivariate method from the field of ordination used to simplify multidimensional data structures. MFA treats all involved ...
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Multivariate is the quality of having multiple variables. It may also refer to: ... Multivariate analysis; Multivariate random variable; Multivariate regression;