Search results
Results From The WOW.Com Content Network
Although having a composition similar to Earth's solid inner core, the outer core remains liquid as there is not enough pressure to keep it in a solid state. Seismic inversions of body waves and normal modes constrain the radius of the outer core to be 3483 km with an uncertainty of 5 km, while that of the inner core is 1220±10 km. [7]: 94
The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth . It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon 's radius.
Jupiter has a rock and/or ice core 10–30 times the mass of the Earth, and this core is likely soluble in the gas envelope above, and so primordial in composition. Since the core still exists, the outer envelope must have originally accreted onto a previously existing planetary core. [5]
Earth has a liquid outer core that generates a magnetosphere capable of deflecting most of the destructive solar winds and cosmic radiation. Earth has a dynamic atmosphere, which sustains Earth's surface conditions and protects it from most meteoroids and UV-light at entry. It has a composition of primarily nitrogen and oxygen.
Schematic of the Earth's inner core and outer core motion and the magnetic field it generates. The Earth's inner core is thought to be slowly growing as the liquid outer core at the boundary with the inner core cools and solidifies due to the gradual cooling of the Earth's interior (about 100 degrees Celsius per billion years). [49]
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle ...
For premium support please call: 800-290-4726 more ways to reach us
A liquid outer core was first shown in 1906 by Geologist Richard Oldham. [2] Oldham observed seismograms from various earthquakes and saw that some seismic stations did not record direct S waves, particularly ones that were 120° away from the hypocenter of the earthquake. [3] In 1913, Beno Gutenberg noticed the abrupt change in seismic