When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only. The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load).

  3. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    Johnson's formula interpolates between the yield stress of the column material and the critical stress given by Euler's formula. It creates a new failure border by fitting a parabola to the graph of failure for Euler buckling using = () There is a transition point on the graph of the Euler curve, located at the critical slenderness ratio.

  4. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    The theory of the behavior of columns was investigated in 1757 by mathematician Leonhard Euler. He derived the formula, termed Euler's critical load, that gives the maximum axial load that a long, slender, ideal column can carry without buckling. An ideal column is one that is: perfectly straight; made of a homogeneous material; free from ...

  5. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  6. Elastic instability - Wikipedia

    en.wikipedia.org/wiki/Elastic_instability

    Elastic instability is a form of instability occurring in elastic systems, such as buckling of beams and plates subject to large compressive loads. There are a lot of ways to study this kind of instability. One of them is to use the method of incremental deformations based on superposing a small perturbation on an equilibrium solution.

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  8. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Euler's formula, e ix = cos x + i sin x; Euler's polyhedral formula for planar graphs or polyhedra: v − e + f = 2, a special case of the Euler characteristic in topology; Euler's formula for the critical load of a column: = ()

  9. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams, and geometrically nonlinear beam deflection. Euler–Bernoulli beam theory does not account for the effects of transverse shear strain. As a result, it underpredicts deflections and overpredicts natural frequencies.