Search results
Results From The WOW.Com Content Network
The sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
Using electricity produced by photovoltaic systems potentially offers the cleanest way to produce hydrogen, other than nuclear, wind, geothermal, and hydroelectric. Again, water is broken down into hydrogen and oxygen by electrolysis, but the electrical energy is obtained by a photoelectrochemical cell (PEC) process.
An overabundance of silica is used to prevent formation of silicon carbide. Microsilica is a useful byproduct. A mineral perryite is similar to ferrosilicon, with its composition Fe 5 Si 2. In contact with water, ferrosilicon may slowly produce hydrogen. The reaction, which is accelerated in the presence of base, is used for hydrogen production.
In chemistry, thermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. [1] The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled.
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen and CO 2 greenhouse gas that may be captured with CCS. Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock.
[44] [45] The carbon/hydrocarbon assisted water electrolysis (so-called CAWE) process for hydrogen generation would perform this operation in a single electrochemical reactor. This system energy balance can be required only around 40% electric input with 60% coming from the chemical energy of carbon or hydrocarbon. [46]
Alkaline water electrolysis is a type of electrolysis that is characterized by having two electrodes operating in a liquid alkaline electrolyte. Commonly, a solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH) at 25-40 wt% is used. [6]
The chemical reactions in the cell involve the electrolyte, electrodes, and/or an external substance (fuel cells may use hydrogen gas as a reactant). In a full electrochemical cell, species from one half-cell lose electrons ( oxidation ) to their electrode while species from the other half-cell gain electrons ( reduction ) from their electrode.