Search results
Results From The WOW.Com Content Network
The segment AB is perpendicular to the segment CD because the two angles it creates (indicated in orange and blue) are each 90 degrees. The segment AB can be called the perpendicular from A to the segment CD, using "perpendicular" as a noun. The point B is called the foot of the perpendicular from A to segment CD, or simply, the foot of A on CD ...
Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.
In a right triangle, a cathetus (originally from the Greek word κάθετος, "perpendicular"; plural: catheti), commonly known as a leg, is either of the sides that are adjacent to the right angle. It is occasionally called a "side about the right angle". The side opposite the right angle is the hypotenuse. In the context of the hypotenuse ...
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron , the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal .
Perfect example of dog math! This cracked me up! My dog has the same weird quirks, but she's the opposite; she loves being in the rain but is scared to get into any big bodies of water.
Image credits: historycoolkids The History Cool Kids Instagram account has amassed an impressive 1.5 million followers since its creation in 2016. But the page’s success will come as no surprise ...
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").