Search results
Results From The WOW.Com Content Network
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...
The exponentially modified Gaussian distribution, a convolution of a normal distribution with an exponential distribution, and the Gaussian minus exponential distribution, a convolution of a normal distribution with the negative of an exponential distribution. The expectile distribution, which nests the Gaussian distribution in the symmetric case.
This case arises frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. The X i {\displaystyle X_{i}} are in general not independent; they can be seen as the result of applying the matrix A {\displaystyle {\boldsymbol {A}}} to a collection of independent Gaussian variables ...
Gaussian functions are used to define some types of artificial neural networks. In fluorescence microscopy a 2D Gaussian function is used to approximate the Airy disk, describing the intensity distribution produced by a point source.
See here for an example.) ... This is the characteristic function of the normal distribution with ... It can be shown that the Fourier transform of a Gaussian, ...
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random ...
The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however ...
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...