Search results
Results From The WOW.Com Content Network
Latent heat is associated with changes of state, measured at constant temperature, especially the phase changes of atmospheric water vapor, mostly vaporization and condensation, whereas sensible heat directly affects the temperature of the atmosphere. In meteorology, the term 'sensible heat flux' means the conductive heat flux from the Earth's ...
Heat transfer can either occur as sensible heat (differences in temperature without evapotranspiration) or latent heat (the energy required during a change of state, without a change in temperature). The Bowen ratio is generally used to calculate heat lost (or gained) in a substance; it is the ratio of energy fluxes from one state to another by ...
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density [1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.
The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.
The cooling load [3] is calculated to select HVAC equipment that has the appropriate cooling capacity to remove heat from the zone. A zone is typically defined as an area with similar heat gains, similar temperature and humidity control requirements, or an enclosed space within a building with the purpose to monitor and control the zone's temperature and humidity with a single sensor e.g ...
However, one needs to select if the heat flux is based on the pipe inner or the outer diameter. If the heat flux is based on the inner diameter of the pipe, and if the pipe wall is thin compared to this diameter, the curvature of the wall has a negligible effect on heat transfer. In this case, the pipe wall can be approximated as a flat plane ...
For heat flow, the heat equation follows from the physical laws of conduction of heat and conservation of energy (Cannon 1984). By Fourier's law for an isotropic medium, the rate of flow of heat energy per unit area through a surface is proportional to the negative temperature gradient across it:
The vertical heat difference consists of latent heat release, sensible heat fluxes and the net longwave thermal radiation. [10] The observed in the skin layer is positive, which corresponds to a temperature increasing with depth (Note that the z-axis points downward into the ocean). This leads to a cool skin layer as can be seen in Fig. 2.