When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length x , {\displaystyle x,} then applying the Pythagorean theorem and definitions of the trigonometric ratios.

  3. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    In the 2nd century AD, the Greco-Egyptian astronomer Ptolemy (from Alexandria, Egypt) constructed detailed trigonometric tables (Ptolemy's table of chords) in Book 1, chapter 11 of his Almagest. [11] Ptolemy used chord length to define his trigonometric functions, a minor difference from the sine convention we use today. [12] (The value we call ...

  4. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.

  5. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  6. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    For example, the inverse of a cubic function with a local maximum and a local minimum has three branches (see the adjacent picture). The arcsine is a partial inverse of the sine function. These considerations are particularly important for defining the inverses of trigonometric functions. For example, the sine function is not one-to-one, since

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  8. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar- , or with a superscript − 1 {\displaystyle {-1 ...

  9. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.