When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hammond's postulate - Wikipedia

    en.wikipedia.org/wiki/Hammond's_postulate

    An E1 reaction consists of a unimolecular elimination, where the rate determining step of the mechanism depends on the removal of a single molecular species. This is a two-step mechanism. The more stable the carbocation intermediate is, the faster the reaction will proceed, favoring the products.

  3. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    Even if the reaction is performed cold, some alkene may be formed. If an attempt is made to perform an S N 1 reaction using a strongly basic nucleophile such as hydroxide or methoxide ion, the alkene will again be formed, this time via an E2 elimination. This will be especially true if the reaction is heated.

  4. Tertiary carbon - Wikipedia

    en.wikipedia.org/wiki/Tertiary_carbon

    The transition states for SN1 reactions that showcases tertiary carbons have the lowest transition state energy level in SN1 reactions. A tertiary carbocation will maximize the rate of reaction for an SN1 reaction by producing a stable carbocation. This happens because the rate determining step of a SN1 reaction is the formation of the carbocation.

  5. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    Competition experiment between SN2 and E2. With ethyl bromide, the reaction product is predominantly the substitution product. As steric hindrance around the electrophilic center increases, as with isobutyl bromide, substitution is disfavored and elimination is the predominant reaction. Other factors favoring elimination are the strength of the ...

  6. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    In chemistry, a nucleophilic substitution (S N) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile).

  7. Elimination reaction - Wikipedia

    en.wikipedia.org/wiki/Elimination_reaction

    The E2 mechanism, where E2 stands for bimolecular elimination, involves a one-step mechanism in which carbon-hydrogen and carbon-halogen bonds break to form a double bond (C=C Pi bond). The specifics of the reaction are as follows: E2 is a single step elimination, with a single transition state.

  8. E1cB-elimination reaction - Wikipedia

    en.wikipedia.org/wiki/E1cB-elimination_reaction

    The E1cB mechanism is just one of three types of elimination reaction. The other two elimination reactions are E1 and E2 reactions. Although the mechanisms are similar, they vary in the timing of the deprotonation of the α-carbon and the loss of the leaving group. E1 stands for unimolecular elimination, and E2 stands for bimolecular elimination.

  9. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    A more detailed explanation of this can be found in the main SN1 reaction page. S N 2 reaction mechanism. The S N 2 mechanism has just one step. The attack of the reagent and the expulsion of the leaving group happen simultaneously. This mechanism always results in inversion of configuration.